Divisionsregler

Divisionsregler

\[ \frac{a}{b} \frac{c}{d} =\frac{a}{b}\cdot\frac{c}{d} =\frac{ac}{bd},\]

då \[ b,d \neq 0. \]   

\[ a\frac{b}{c} =a \cdot \frac{b}{c} = \frac{a}{1} \cdot \frac{b}{c} = \frac{ab}{c} \]

då \[ \quad c \neq 0 .\]

\[ \frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}\]

eller

\[ \frac{-a}{-b} = \frac{a}{b}\]

då \[ b \neq 0. \]

\[ \frac{a}{b} \big/ \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} =\frac{ad}{bc} \]

då \[ b,c \neq 0. \]

\[ \frac{a/b}{c} = \frac{\frac{a}{b}}{c}  = \frac{a}{b} \cdot \frac{1}{c} = \frac{a}{bc}\]

då \[ b,c \neq 0. \]

\[ \frac{a}{b/c} = \frac{a}{\frac{b}{c}}  = \frac{a}{1} \cdot \frac{c}{b} = \frac{ac}{b}\]

då \[b,c \neq 0. \]

Exempel:

\[ \frac{3}{2} \cdot \frac{4}{7}  \]

\[ \begin{align}\frac{3}{2} \cdot \frac{4}{7} &= \frac{3\cdot4}{2\cdot 7}\\  &=\frac{3\cdot2 \cdot \cancel{2} }{\cancel{2}\cdot 7}  \\& = \frac{6}{7} \end{align}  \]

\[ 3\frac{2}{12} \]

\[ \begin{align} 3\frac{2}{12} &= 3\cdot\frac{2}{12}   \\ &= \frac{3}{1}\cdot\frac{2}{12}  \\ &= \frac{3\cdot 2}{1\cdot 12} \\ &= \frac{6}{12} \\ &= \frac{6}{6\cdot 2} \\ &= \frac{\cancel{6} }{\cancel{6}\cdot 2} \\ &=  \frac{1}{2}. \end{align} \]

\[ \frac{3}{4} \big/ \frac{6}{8}  \]

\[ \begin{align} \frac{3}{4} \big/ \frac{6}{8} &= \frac{\frac{3}{4}}{\frac{6}{8}}  \\&= \frac{3}{4}\cdot \frac{8}{6} \\&= \frac{3 \cdot 8}{4 \cdot 6} \\&= \frac{\cancel{3} \cdot \cancel{2} \cdot \cancel{4} }{ \cancel{4} \cdot \cancel{3} \cdot \cancel{2}} \\&= 1.  \end{align} \]

Har du hittat ett fel, eller har du kommentarer till materialet på den här sidan? Mejla formelsamlingen@mattecentrum.se