Trigonometriska formler

Trigonometriska formler i grader

$$sin(180°-v)=sin\, v$$

$$cos(180°-v)=-cos\, v$$

$$tan(180°-v)=-tan\, v$$

$$cot(180°-v)=-cot\, v$$


$$sin(v-180°)=-sin\, v$$

$$cos(v-180°)=-cos\, v$$

$$tan(v-180°)=tan\, v$$

$$cot(v-180°)=cot\, v$$


$$sin(360°-v)=-sin\, v$$

$$cos(360°-v)=cos\, v$$

$$tan(360°-v)=-tan\, v$$

$$cot(360°-v)=-cot\, v$$


$$sin(90°-v)=cos\, v$$

$$cos(90°-v)=sin\, v$$

$$tan(90°-v)=cot\, v$$

$$cot(90°-v)=tan\, v$$


$$sin(-v)=-sin\,v$$

$$cos(-v)=cos\,v$$

$$tan(-v)=-tan\,v$$

$$cot(-v)=-cot\,v$$


Trigonometriska formler i radianer

$$sin(\pi-x)=sin\,x$$

$$cos(\pi-x)=-cos\,x$$

$$tan(\pi-x)=-tan\,x$$

$$cot(\pi-x)=-cot\,x$$


$$sin(x-\pi)=-sin\,x$$

$$cos(x-\pi)=-cos\,x$$

$$tan(x-\pi)=tan\,x$$

$$cot(x-\pi)=cot\,x$$


$$sin(2\pi-x)=-sinx$$

$$cos(2\pi-x)=cos\,x$$

$$tan(2\pi-x)=-tan\,x$$

$$cot(2\pi-x)=-cot\,x$$


$$sin(\frac{\pi}{2}-x)=cos\,x$$

$$cos(\frac{\pi}{2}-x)=sin\,x$$

$$tan(\frac{\pi}{2}-x)=cot\,x$$

$$cot(\frac{\pi}{2}-x)=tan\,x$$


$$sin(-x)=-sin\,x$$

$$cos(-x)=cos\,x$$

$$tan(-x)=-tan\,x$$

$$cot(-x)=-cot\,x$$

Har du kommentarer till materialet på den här sidan? Mejla formelsamlingen@mattecentrum.se