Trigonometriska formler

Trigonometriska formler i grader

\[\sin(180°-v)=\sin v\]

\[\cos(180°-v)=-\cos v\]

\[\tan(180°-v)=-\tan v\]

\[\cot(180°-v)=-\cot v\]


\[\sin(v-180°)=-\sin v\]

\[\cos(v-180°)=-\cos v\]

\[\tan(v-180°)=\tan v\]

\[\cot(v-180°)=\cot v\]


\[\sin(360°-v)=-\sin v\]

\[\cos(360°-v)=\cos v\]

\[\tan(360°-v)=-\tan v\]

\[\cot(360°-v)=-\cot v\]


\[\sin(90°-v)=\cos v\]

\[\cos(90°-v)=\sin v\]

\[\tan(90°-v)=\cot v\]

\[\cot(90°-v)=\tan v\]


\[\sin(-v)=-\sin v\]

\[\cos(-v)=\cos v\]

\[\tan(-v)=-\tan v\]

\[\cot(-v)=-\cot v\]


Trigonometriska formler i radianer

\[\sin(\pi-x)=\sin x\]

\[\cos(\pi-x)=-\cos x\]

\[\tan(\pi-x)=-\tan x\]

\[\cot(\pi-x)=-\cot x\]


\[\sin(x-\pi)=-\sin x\]

\[\cos(x-\pi)=-\cos x\]

\[\tan(x-\pi)=\tan x\]

\[\cot(x-\pi)=\cot x\]


\[\sin(2\pi-x)=-\sin x\]

\[\cos(2\pi-x)=\cos x\]

\[\tan(2\pi-x)=-\tan x\]

\[\cot(2\pi-x)=-\cot x\]


\[\sin(\frac{\pi}{2}-x)=\cos x\]

\[\cos(\frac{\pi}{2}-x)=\sin x\]

\[\tan(\frac{\pi}{2}-x)=\cot x\]

\[\cot(\frac{\pi}{2}-x)=\tan x\]


\[\sin(-x)=-\sin x\]

\[\cos(-x)=\cos x\]

\[\tan(-x)=-\tan x\]

\[\cot(-x)=-\cot x\]

Har du hittat ett fel, eller har du kommentarer till materialet på den här sidan? Mejla formelsamlingen@mattecentrum.se