Trigonometriska formler
Trigonometriska formler i grader
$$sin(180°-v)=sin\, v$$
$$cos(180°-v)=-cos\, v$$
$$tan(180°-v)=-tan\, v$$
$$cot(180°-v)=-cot\, v$$
$$sin(v-180°)=-sin\, v$$
$$cos(v-180°)=-cos\, v$$
$$tan(v-180°)=tan\, v$$
$$cot(v-180°)=cot\, v$$
$$sin(360°-v)=-sin\, v$$
$$cos(360°-v)=cos\, v$$
$$tan(360°-v)=-tan\, v$$
$$cot(360°-v)=-cot\, v$$
$$sin(90°-v)=cos\, v$$
$$cos(90°-v)=sin\, v$$
$$tan(90°-v)=cot\, v$$
$$cot(90°-v)=tan\, v$$
$$sin(-v)=-sin\,v$$
$$cos(-v)=cos\,v$$
$$tan(-v)=-tan\,v$$
$$cot(-v)=-cot\,v$$
Trigonometriska formler i radianer
$$sin(\pi-x)=sin\,x$$
$$cos(\pi-x)=-cos\,x$$
$$tan(\pi-x)=-tan\,x$$
$$cot(\pi-x)=-cot\,x$$
$$sin(x-\pi)=-sin\,x$$
$$cos(x-\pi)=-cos\,x$$
$$tan(x-\pi)=tan\,x$$
$$cot(x-\pi)=cot\,x$$
$$sin(2\pi-x)=-sinx$$
$$cos(2\pi-x)=cos\,x$$
$$tan(2\pi-x)=-tan\,x$$
$$cot(2\pi-x)=-cot\,x$$
$$sin(\frac{\pi}{2}-x)=cos\,x$$
$$cos(\frac{\pi}{2}-x)=sin\,x$$
$$tan(\frac{\pi}{2}-x)=cot\,x$$
$$cot(\frac{\pi}{2}-x)=tan\,x$$
$$sin(-x)=-sin\,x$$
$$cos(-x)=cos\,x$$
$$tan(-x)=-tan\,x$$
$$cot(-x)=-cot\,x$$