Trigonometriska formler
Trigonometriska formler i grader
\[\sin(180°-v)=\sin v\]
\[\cos(180°-v)=-\cos v\]
\[\tan(180°-v)=-\tan v\]
\[\cot(180°-v)=-\cot v\]
\[\sin(v-180°)=-\sin v\]
\[\cos(v-180°)=-\cos v\]
\[\tan(v-180°)=\tan v\]
\[\cot(v-180°)=\cot v\]
\[\sin(360°-v)=-\sin v\]
\[\cos(360°-v)=\cos v\]
\[\tan(360°-v)=-\tan v\]
\[\cot(360°-v)=-\cot v\]
\[\sin(90°-v)=\cos v\]
\[\cos(90°-v)=\sin v\]
\[\tan(90°-v)=\cot v\]
\[\cot(90°-v)=\tan v\]
\[\sin(-v)=-\sin v\]
\[\cos(-v)=\cos v\]
\[\tan(-v)=-\tan v\]
\[\cot(-v)=-\cot v\]
Trigonometriska formler i radianer
\[\sin(\pi-x)=\sin x\]
\[\cos(\pi-x)=-\cos x\]
\[\tan(\pi-x)=-\tan x\]
\[\cot(\pi-x)=-\cot x\]
\[\sin(x-\pi)=-\sin x\]
\[\cos(x-\pi)=-\cos x\]
\[\tan(x-\pi)=\tan x\]
\[\cot(x-\pi)=\cot x\]
\[\sin(2\pi-x)=-\sin x\]
\[\cos(2\pi-x)=\cos x\]
\[\tan(2\pi-x)=-\tan x\]
\[\cot(2\pi-x)=-\cot x\]
\[\sin(\frac{\pi}{2}-x)=\cos x\]
\[\cos(\frac{\pi}{2}-x)=\sin x\]
\[\tan(\frac{\pi}{2}-x)=\cot x\]
\[\cot(\frac{\pi}{2}-x)=\tan x\]
\[\sin(-x)=-\sin x\]
\[\cos(-x)=\cos x\]
\[\tan(-x)=-\tan x\]
\[\cot(-x)=-\cot x\]